Why Olives Are Not Paleo, But Olive Oil Is
From the information the International Olive Council has provided above (1), you can easily see that extensive processing is required to remove the bitter compound (oleuropein) from raw, fresh olives. To make fresh olives edible requires massive additions of salt at nearly every stage of processing.
Table 1 shows the high sodium (Na+) and low potassium (K+) content of processed olives. A 500 kcal serving of green olives would supply you with 5,365 mg of Na+, whereas the same serving of jumbo black olives would give you 4,537 mg of Na+, and a 500 kcal serving of black olives would provide 3,196 mg of Na+. The recommended daily intake of Na+ is 2300 mg for adult men and women (3-6). Accordingly, even modest consumption of olives gives you way too much Na+ and not enough K+.
Table 1. Na+ and K+ content of olives (drupes) and olive oil (2)
Olives | Na+ mg/
1000 kcal | K+ mg/
1000 kcal | K+/Na+
(mg/mg) |
Green Olives | 10731 | 290 | 0.027 |
Jumbo Black olives | 9074 | 111 | 0.012 |
Black Olives | 6391 | 70 | 0.011 |
Olive Oil | 2.26 | 1.13 | 0.500 |
Now contrast the Na+ concentrations in a comparable 1000 kcal serving of olive oil to that found in whole olives. A 1000 kcal serving of olive oil only contains 2.26 mg of Na+, or 4,748 times less Na+ than found in a 1000 kcal serving of green olives.
As I mentioned earlier, olives are member of the stone fruit (drupe) family. Table 2 compares the Na+ and K+ concentrations of fresh drupes to processed olives. Note that fresh drupes contain very low concentrations of Na+, comparable to olive oil, but additionally they contain high concentrations of the health promoting ion K+. A high K+/Na+ ratio is a universal characteristic of both wild and domesticated plant foods (7), and K+ is typically 5-10 times higher than Na+ in hunter gatherer diets (7-11).
Table 2. Na+ and K+ content of other drupes (stone fruit), including apricots, peaches, plums and nectarines (2)
Drupes (stone fruits) | Na+ (mg)/
1000 kcal | K+ (mg)/
1000 kcal | K+/Na+ (mg/mg) |
Apricot | 21 | 5396 | 259.00 |
Nectarine | 2 | 4568 | 2849.20 |
Peach | 2 | 4872 | 2850.00 |
Plum | 1 | 3413 | 2591.50 |
It is obvious that all olives contain much more Na+ than K+ (on average 18.5 times more Na+ than K+) compared to unadulterated, non-salted olive oil. Clearly, the K+/Na+ ratios in processed olives lie far beyond the evolutionary normative values which conditioned our species’ genome (8-16). Accordingly, it is not surprising that randomized controlled trials of salt consumption in humans as well as epidemiological studies (17-24) support the notion that added salt (be it sea salt or refined salt) from olives or any other processed food promotes cardiovascular disease, cancer, autoimmunity, chronic inflammation, immune system dysfunction, and ill health (17-51).
The Bottom Line
Olives are high in sodium, and should be eaten very sparingly on The Paleo Diet. If you really want to enjoy olives, rinse them really well before serving, and pair them with healthy omega-3 fatty acids, like in these tuna salad lettuce wraps.
References
1. "About Olives". International Olive Council. Retrieved September 5, 2017. //www.internationaloliveoil.org/estaticos/view/77-about-olives
2. Axxya systems. Nutritionist Pro. //www.nutritionistpro.com/
3. Centers for Disease Control and Prevention (CDC). Vital signs: food categories contributing the most to sodium consumption - United States, 2007-2008. MMWR Morb Mortal Wkly Rep. 2012 Feb 10;61(5):92-8.
4. McDonough AA, Veiras LC, Guevara CA, Ralph DL. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017 Apr 1;312(4): E348-E356.
5. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, et al. Global burden of diseases nutrition and chronic diseases expert group.
Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014 Aug 14;371(7):624-34
6. He FJ, Li J, Macgregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev. 2013 Apr 30;(4):CD004937
7. //thepaleodiet.com/further-evidence-against-a-high-sodium-paleo-diet/
8. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J. Origins and evolution of the western diet: Health implications for the 21st century. Am J Clin Nutr 2005;81:341-54
9. Jansson B. Human diet before modern times. In: Sodium: “No!” Potassium: “Yes!”. Sodium increases and potassium decreases cancer risk. Unpublished book manuscript, 1997, Chapter 2 pp. 1-20.
10. Frassetto L, Morris RC Jr, Sellmeyer DE, Todd K, Sebastian A. Diet, evolution and aging--the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr. 2001 Oct;40(5):200-13.
11. Sebastian A, Frassetto LA, Sellmeyer DE, Morris RC Jr. The evolution-informed optimal dietary potassium intake of human beings greatly exceeds current and recommended intakes. Semin Nephrol. 2006 Nov;26(6):447-53
12. Gleibermann L. Blood pressure and dietary salt in human populations. Ecol Food Nutr 1973;2:143-56
13. Dahl L. Possible role of salt intake in the development of hypertension. In: Cottier P. Bock KD eds. Essential hypertension: an international symposiu. Berlin: Springer-Verlag. 1960:53-65.
14. Froment A. Milon H, Gravier C. Relationship of sodium intake and arterial hypertension. Contribution of geographical epidemiology. Rev Epidemiol Sante Publique 1979;27:437-54.
15. Shaper AG. Communities without hypertension. In: Shaper AG, Hutt MSR, Fejfar Z eds. Cardiovascular disease in the tropics. London: British Medical Association. 1974:77-83.
16. Denton D. The hunger for salt: an anthropological, physiological and medical analysis. Chapter 27, Salt intake and high blood pressure in man. Primitive peoples, unacculturated societies: with some comparisons. Berlin: SpringVerlag, 1982, 556-578.
17. O'Donnell M1, Mente A, Rangarajan S et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014 Aug 14;371(7):612-23.
18. Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmüller C, Macgregor GA, de Wardener HE. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2829-34
19. Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013 Sep;88(9):987-95.
20. McDonough AA, Veiras LC, Guevara CA, Ralph DL. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017 Apr 1;312(4):E348-E356.
21. McDonough AA, Youn JH. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits. Physiology (Bethesda). 2017 Mar;32(2):100-111
22. Du S, Batis C, Wang H, Zhang B, Zhang J, Popkin BM. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr. 2014 Feb;99(2):334-43.
23. Drewnowski A, Maillot M, Rehm C. Reducing the sodium-potassium ratio in the US diet: a challenge for public health. Am J Clin Nutr. 2012 Aug;96(2):439-44.
24. Fang Y, Mu JJ, He LC, Wang SC, Liu ZQ. Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive asians. Hypertension. 2006 Oct;48(4):724-9
25. Jantsch J, Schatz V, Friedrich D et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015 Mar 3;21(3):493-501.
26. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013 Apr 25;496(7446):518-22
27. Hucke S, Eschborn M, Liebmann M, Herold M, Freise N, Engbers A, Ehling P, Meuth SG, Roth J, Kuhlmann T, Wiendl H, Klotz L. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun. 2016 Feb;67:90-101.
28. Zostawa J, Adamczyk J, Sowa P, Adamczyk-Sowa M. The influence of sodium on pathophysiology of multiple sclerosis. Neurol Sci. 2017 Mar;38(3):389-398.
29. Dmitrieva NI, Burg MB. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PLoS One. 2015 Jun 4;10(6): e0128870. doi: 10.1371/journal.pone.0128870.
30. Schatz V, Neubert P, Schröder A, Binger K, Gebhard M, Müller DN, Luft FC, Titze J, Jantsch J. Elementary immunology: Na+ as a regulator of immunity. Pediatr Nephrol. 2017 Feb;32(2):201-210.
31. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, Deng S, Herold KC, Kuchroo VK, Kleinewietfeld M, Hafler DA. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. 2015 Nov 2;125(11):4212-22.
32. Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Choukèr A. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015 Jul;166(1):103-10.
33. Zhou X, Zhang L, Ji WJ, Yuan F, Guo ZZ, Pang B, Luo T, Liu X, Zhang WC, Jiang TM, Zhang Z, Li YM. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One. 2013 Apr 4;8(4):e60332.
34. Zhou X, Yuan F, Ji WJ, Guo ZZ, Zhang L, Lu RY, Liu X, Liu HM, Zhang WC, Jiang TM, Zhang Z, Li YM. High-salt intake induced visceral adipose tissue hypoxia and its association with circulating monocyte subsets in humans. Obesity (Silver Spring). 2014 Jun;22(6):1470-6.
35. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013 Apr 25;496(7446):513-7.
36. Kostyk AG, Dahl KM, Wynes MW, Whittaker LA, Weiss DJ, Loi R, Riches DW. Regulation of chemokine expression by NaCl occurs independently of cystic fibrosis transmembrane conductance regulator in macrophages. Am J Pathol. 2006 Jul;169(1):12-20.
37. Lang KS, Fillon S, Schneider D, Rammensee HG, Lang F. Stimulation of TNF alpha expression by hyperosmotic stress. Pflugers Arch. 2002 Mar;443(5-6):798-803.
38. Ip WK, Medzhitov R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun. 2015 May 11;6:6931.
39. Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol. 2017 Jan 1;312(1):R1-R4
40. Binger KJ, Gebhardt M, Heinig M et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015 Nov 2;125(11):4223-38
41. Min B, Fairchild RL. Over-salting ruins the balance of the immune menu. J Clin Invest. 2015 Nov 2;125(11):4002-4.
42. Amara S, Tiriveedhi V. Inflammatory role of high salt level in tumor microenvironment (Review). Int J Oncol. 2017 May;50(5):1477-1481
43. Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol Lett. 2016 Aug;12(2):933-943
44. Amara S, Zheng M, Tiriveedhi V. Oleanolic acid inhibits high salt-induced exaggeration of warburg-like metabolism in breast cancer cells. Cell Biochem Biophys. 2016 Sep;74(3):427-34.
45. Amara S, Whalen M, Tiriveedhi V. High salt induces anti-inflammatory MΦ2-like phenotype in peripheral macrophages. Biochem Biophys Rep. 2016 Sep;7:1-9
46. Amara S, Ivy MT, Myles EL, Tiriveedhi V. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol. 2016 Apr; 302:1-10
47. Davies RJ, Sandle GI, Thompson SM. Inhibition of the Na+,K(+)-ATPase pump during induction of experimental colon cancer. Cancer Biochem Biophys. 1991 Aug;12(2):81-94.
48. Thompson, Davies RJ. A high potassium diet prevents transepithelial depolarization in experimental colon cancer. In: Vitamins and Minerals in the Prevention and Treatment of Cancer, (Maryce M. Jacobs, Ed.), CRC Press, Boston, 1991, p 263.
49. Fine BP, Hansen KA, Walters TR, Denny TN. Dietary sodium deprivation inhibits cellular proliferation: evidence for circulating factor(s). In: Vitamins and Minerals in the Prevention and Treatment of Cancer, (Maryce M. Jacobs, Ed.), CRC Press, Boston, 1991, p 276.
50. Fine BP, Ponzio NM, Denny TN, Maher E, Walters TR. Restriction of tumor growth in mice by sodium-deficient diet. Cancer Res. 1988 Jun 15;48(12):3445-8.
51. Davies RJ, Daly JM. Potassium depletion and malignant transformation of villous adenomas of the colon and rectum. Cancer. 1984 Mar 15;53(6):1260-4.