A great debate of our time: should I choose wild or farmed fish?


When I began my career in fisheries science 43 years ago, I had no idea a major debate over where we get our fish from would be as contentious as it has become.  

Admittedly, I was drawn to the important questions of our future food supplies and the role fish would play in that future. 

So, I ask here the burning question.  Should we buy fish sourced from the wild or from farms—also known as aquacultured fish?  Facts and science can lead us to an answer. 

If I know only one thing, I know this: the best way to analyze this question is objectively, using facts and science as the basis for that analysis.  Throughout my career, I have used objectivity and facts to guide my decisions.  This approach has served me well.  There are times to set aside dogma (otherwise known as “religion,” or, as I’m using it here, belief in something based purely on faith,) prejudicepreconceived notions, and tightly held beliefs when the facts—scientific facts—strongly suggest otherwise. 

If you consider yourself an environmentalist (however you may define the word,) I applaud you.  I am one of them and we need more of them in the world.  However, environmentalists are just as prone to misconceptions as anyone.  This is a human trait where we accept or reject a notion based on a mental construct we devise and build over time.  Indeed, that construct becomes more rigid as we get older, and tends to be reinforced by items of information that fit into or conform to that construct, while at the same time we tend to reject the items that do not fit the construct or are contrary to it.  In short, we believe what we want to believe.  History is full of examples (e.g., the earth is flat, we are at the center of the solar system and universe, alchemists can turn lead into gold, on and on). 

The belief that wild fish are “better for you than farmed fish—more wholesome and nutritious, more natural, better for the environment, live a better lifeis just one more example without a real basis in facts.  It’s religion. 

I know for some of you, I have just blasphemed!  How can I dare say cultured fish are superior to wild fish?  I apologize, but please, hear me out and read on!  Read what I am about to say and then form your own opinion.  I promise to be as objective and fact-based as possible.  Dogma, religion, and bias have no place in this discussion. 

 

The Science and Facts of Farm and Wild Fish – The Seas are Limited 

Here’s the predicament with which we are faced.  According to the UN Food and Agriculture Organization, the overall demand and supply today in the world for fish and seafood is about 175 million metric tons per year (yes, that’s 385 billion pounds), and is growing at a rate of about 3 percent per year1.  The reasons for this rapid growth are numerous, but steady increases in world population and the rise of the large Chinese middle class (with more disposable income and an aspiration for higher-quality protein) are near the top of the list. 

Of the 175 million metric tons of supply, 90 to 95 million metric tons come from the wild.  The remaining 80 to 85 million metric tons come from aquaculture—fish farms—with a value that exceeds $231 billion.  The issue is that the seas have reached their production limits and did so more than 25 years ago.  Indeed, many wild fisheries are overfished and are threatened with collapse1. 

By the way, there is an additional 30 million metric tons per year of aquatics plants (mostly macroalgae) that are produced on aquatic farms in addition to finfish and shellfish. [1] 

Bottom line: wild supplies are finite!  So, we cannot expect any more production from the wild.  More wild fish will not miraculously appear, and we don’t want to slaughter every one of them.  That’s what would happen without aquaculture.  We would eat every remaining fish on the planet, and then a few days later we would be hungry again.  End of story.  It’s that simple. 

 

18 Reasons We Should Look to Aquaculture 

As the saying goes, every cloud has a silver lining.  This cloud is no different.  The issue is the misconceptions and dogma. Many lump fish farms in with large-scale cattle and chicken feedlot farms with all the same health and environmental concerns. But that’s just not the case. 

So, bear with me as I explain, in an objective and fact-based way, why we should look to aquaculture as a solution to our predicament. 

1. Supplies from farms are not finite. This means that aquaculture will continue to grow rapidly (about 5 percent per year), and over time supplies from the wild will essentially fade into the backgroundthough not disappear entirely—as a percentage of total supply.   

2. True environmentalists are pro-aquaculture.  Aquaculture takeshuman supply pressure off wild stocks and puts it where it should be—on production from farms.  Aquaculture is agriculture.  Hunting and gathering must end in the seas as it ended on land 10,000 years ago at the dawn of terrestrial agriculture. 

3. Farmed fish are not abused! The notion of abuse is completely counterproductive to the best interests of the fish farmer and counterintuitive to their goals, which are fast-growing and healthy fish.  Water quality, fish densities, and nutrition are optimized to reduce stress and create a healthy production environment.  They are treated with the respect they need and   Happy fish create high rates of survival, smaller feed bills, and healthy profits for producers.  Humane treatment is simply good business. 

4. Aquaculture products are fully traceable, from feed to hatchery,to grow-out, to processing, to distribution, to endpoint of sale. [2]  We know exactly what went into their production and their exposure.  Traceability simply is not possible with wild finfish and shellfish!  We don’t know what they have eaten or what they have been exposed to (toxins, medical waste, plastics, heavy metals, etc.). 

5. Water use and discharge from many indoor facilities is limited by use of recirculating aquaculture system (RAS) technology.  This approach uses filters that reuse water again and again, filtering out wastes and replenishing oxygen.  This is a very frugal approach that uses minimal amounts of water as compared to other conventional technologies such as raceways, ponds, and ocean net-pens.

6. More and more fish farm operators use a technique called integrated multi-trophic aquaculture (IMTA).This is where the “wastes” from the fish facility are used as raw materials for production of other products such as shellfish and saleable plants. [3,4]  These secondary crops act as natural filters, turning potential liabilities (i.e., fish wastes) into raw material assets.  Operators literally make money from wastes.  Additionally, solid wastes can be used as high-quality material for composting and application to farmers’ fields. 

7. Aquaponics (i.e., integrated aquaculture and hydroponics) is one form of IMTA. This is a very popular land-based form of IMTA, usually with the fish in tanks in an insulated building and the plants in an adjacent, attached   This approach is highly scalablevery small and costing only a few dollars (and fits on a kitchen countertop), to very large systems capitalized with tens of millions of dollars. 

8. Discharge water is high quality when RAS and IMTA systems are used. The discharge water (what of it there is—only small amounts) is high quality or higher than the intake water. 

9. Indoor facilities can operate year-round. In good and bad weather and employ people who otherwise may not be able to find work.

10. The excessive use of chemicals and antibiotics in aquaculture is a myth in North America,Europe, and many parts of Asia.  In fact, as aquaculture is such a fledgling industry, the controlling government departments have made the use of these compounds more difficult than most other forms of agriculture.  In the USA, the FDA highly regulates use of most chemicals and antibiotics. [5]  They are only allowed after the demonstration of need through a clinical examination and/or under the guidance of a veterinarian. 

11. Aquaculture producers avoid the use of all therapeutants (i.e., antibiotics,sterilants, vaccines, etc.) whenever possible.  They are expensive and diminish profitability.  Instead, producers are turning to probiotics, superior management techniques and equipment, and other benign forms of health maintenance.  Farmed finfish and shellfish are health food—wholesome and nutritious.

12. Third-party certification programs are now the norm in aquacultureand in all parts of the worldMuch like the Good Housekeeping Seal of Approval or Underwriters Laboratories UL.  They guarantee fish welfare, sustainability, environmental sensitivity, sanitation, freedom from chemical residues, and wholesomeness. 

13. Fish have a much better feed conversion ratiothan any other agriculture species. The weight of feed to weight of fish is usually at or below 1.5:1.  By comparison, swine and cattle convert at rates as high as 8:1 or more, and poultry at 2-3:1. [6]  Because fish are cold-blooded (poikilothermic), little or no food energy goes into producing heat, so much more of it is directed toward growth.  Growth is regulated by the water temperature in which the fish live.  With proper species selection and/or supplying appropriate conditions, growth rates can be optimized.  Low feed conversion ratios mean more sellable production for each unit of food consumed. 

14. Aquaculturistscan easily adjust the nutritional qualities of their fish for consumers – by simple manipulations of their feed, including eliminating contaminants. [7]  Cultured fish are as nutritious or often more nutritious than their wild-caught counterparts. [8] 

15. Fish farms canactually use less water per unit of production than cattle ranches and feed lots.  And they are virtually odorless. 

16. Aquaculture in general offers a much more efficient use of space.  Aquaculture can produce a greater amount of product in a given area by virtue of production in a three-dimensional culture environment. [9]

17. Fish farms can be the envy of the nearby conventional and regional farmers as they become models of sustainability and environmental stewardship.  Their neighbors and other customers will be proud to buy products from these facilities. 

18.  If you want to be part of the solution and not part of the problem, then support aquaculture and eat farmed products.  Avoid fish from the wild. 

 

Buy Farm Raised Fish 

Aquaculture is not perfect (again, aquaculture is not perfect!).  No one claims it is, and aquaculture is not a panacea Translation: my eyes and mind are wide open!  But improvements are implemented every day and every year, such as alternative and sustainable aquaculture (actually, this is true for all livestock including fish) and feed ingredients (e.g., insect- and algal-based proteins and oils) which are coming on strong.  I see it all the time.  Indeed, as a consultant, I can help fix what is wrong. 

Let’s allow the wild fish to live out their lives in peace and help them to contribute to the overall health of the natural aquatic ecosystems in which they reside, as they should.  When you buy fish, buy farmed products and rest comfortably that you are doing the best for yourself and the world.  

 

References 


1. FAO.  2018.  FAO yearbook.  Fishery and aquaculture statistics 2016.  Food and Agriculture Organization of the United Nations.  http://www.fao.org/3/i9942t/I9942T.pdf 

2. FDA.  1999.  Guidance for industry: questions and answers for guidance to facilitate the implementation of a HACCP system in seafood processing.  U.S. Food and Drug Administration.  https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-questions-and-answers-guidance-facilitate-implementation-haccp-system-seafood 

3. Anonymous.  2019.  Integrated multi-trophic aquaculture.  Wikipedia.  https://en.wikipedia.org/wiki/Integrated_multi-trophic_aquaculture 

4. Boxman, S.E., A. Kruglick, B. McCarthy, N.P. Brennan, M. Nystrom, S.J. Ergas, T. Hanson, K.L. Main, and M.A. Trotz.  2015.  Performance evaluation of a commercial land-based integrated multi-trophic aquaculture system using constructed wetlands and geotextile bags for solids treatment.  Aquacultural Engineering 69:23-36. 

5. FWS.  2015.  Approved drugs for use in aquaculture.  U.S. Fish and Wildlife Service.  https://www.fws.gov/fisheries/aadap/PDF/2nd-Edition-FINAL.pdf 

6. Anonymous.  2018.  Feed conversion ratio.  Wikipedia.  https://en.wikipedia.org/wiki/Feed_conversion_ratio#Beef_cattle 

7. Hardy, R.W.  2005.  Contaminants in salmon: a follow-up.  Aquaculture Magazine 31(2):43-45. 

8. Hardy, R.W.  2003.  Farmed fish and omega-3 fatty acids.  Aquaculture Magazine 29(2):63-65. 

9. Despommier, D.  2010.  Vertical farming.  Thomas Dunne Books.  New York.  305pp. 

About Bill Manci

Bill ManciBill Manci, president of FTA, Inc., created the company in 1982 after receiving his formal training in zoology and fisheries science at the University of Wisconsin-Madison, and after a six-year career in aquaculture and fisheries science research. Bill and his team have worked on many types of fish farming and commercial fishing projects throughout the U.S.A. and the world.

Bill also has published more than 300 technical and popular articles on the subjects of aquaculture, fish farming, and fishing, and served as an expert witness in aquaculture and fisheries-related litigation. Bill worked closely with Dr. Loren Cordain during the 2000’s when Loren began to write his popular books on the Paleo Diet. Bill developed the original Paleo Diet website, among other things, which helped Loren to interact with the public that was growing an insatiable appetite for information about his Paleo Diet concepts and ideas relative to human nutrition and our genetic predispositions.

*You can unsubscribe at anytime

Comments to this website are moderated by our editorial board. For approval, comments need to be relevant to the article and free of profanities and personal attacks. We encourage cordial debates for the betterment of understanding and discovery. Comments that advertise or promote a business will also not be approved, however, links to relevant blog posts that follow the aforementioned criteria will be allowed. Thank you.

“3” Comments

  1. What a great conversation to open. I am glad to hear steps are being taken to improve fish farming. I very rarely eat fish, but maybe it has a role to play in a healthy diversified eating habits. I eat lots of meats. I certainly would like to try and make my eating decisions based on objective science, in addition to philosophical concerns. But they don’t operate independently of each other in humans, do they?
    First off, of course, is how much money and job incentive has the author received from corporations running fish farms? Just gotta get that out of the way, right?
    Here are questions that spring to mind after reading the article:
    Why can’t the world have both safe, pole caught fishing, as well as regenerative fish farms? Why are they presented as mutually exclusive?
    Are more fish farms owned by small business owners, or by publicly traded large corporations?
    What percentage of farms are using regenerative practices vs chemically dependent monoculture destructive practices?
    How many different fish species are currently used in farming vs wild fish caught sold and eaten?
    Are farmed fish given a species appropriate diet?
    Is the fish food non-gmo? What percentage of the fish food industry is non-gmo?
    What percentage of wild caught fish come from destructive netting practices vs pole caught or other less invasive fishing practices.
    What are the industry projections for the wild fish industry that doesn’t use bad practices?
    What impact have extended protection zones around coasts had on wild fishing and fish populations in the short term, and what are the the long term expectations.
    Does 100% of the human population even like or want to eat fish, are those opinions shifting, and if so, why?
    What is the energy output to ship American farmed fish to China to feed their fish-hungry middle class – was it taken into account re: energy required to produce the fish (which are only bought and eaten after transport) and who provided the information on that apparent growth market?
    What is the growth rate of China’s indiginous fish farm market?
    If American farmed fish is not exported, would that industry in the US still be necessary? Successful?
    Who is setting the standards for what is considered “healthier” when it comes to farmed vs wild fish and what biomarkers are being tested?
    What are the typical feeds used on fish farms? Are those feeds organic or organically grown or do they come with synthetic chemicals in them? Are the feeds genetically engineered?
    Is the farm fish food government subsidized? Would eating farmed fish prop up unfair government subsidization of the grain industry vs fruit and vegetable farming and pasture raised animal meat?
    Is the water being used fluoridated city water or rain water?
    Do the farms mimic the microbial, mineral, energy input diversification that the wild environment offers, diversification that has been solidly shown to benefit other plant and animal sustainability?
    Are there multiple fish species in one tank, or is it monoculture.
    Do I want to spend my money on fish because they support hydroponic plant food farms, which corporation-based growing practices and influence are undermining organic standards and politically influencing regulators on how to prevent comprehensive food labeling from becoming standard in the food industry?
    I think I read there is a rule about growing food in manure not being allowed for 6 months after manure application to fields. If true, is there a similar rule for using fish feces in hydroponics?
    Knowing what we know now about how the environment and food affect epigenetics and protein folding/misfolding, which influences health and disease, what studies have been done on farmed fish transgenerational health and the effect of farmed fish on transgenerational human genetic expression?
    What will be the main fish raised in fish farms: existing species or genetically engineered fish that grow faster to increase profits?
    If synthetic chemicals and plastics and pharmaceuticals affecting fish fertility were outlawed, instead of just the fishing industry regulated, what would our wild fish populations be? Would it be better capable of sustaining human health? How would that affect the market potential of fish farms?
    When you talk about what it takes to produce beef and chicken, are those stats from factory farmed beef and chicken or pasture raised animals, or both?
    Hopefully the author can elucidate on these contributing factors that all play into an informed consumer’s food decisions, especially since he has direct industry experience! Maybe he can take reader comments and questions and do a second article, maybe even share names of the most regenerative fish farms as direct to consumer potential suppliers.

  2. A great debate of our time: should I choose wild or farmed fish?Dear Mr. Manci,
    I read your article “A great debate of our time: should I choose wild or farmed fish?” with great interest and appreciation. But first come information about me.

    I’m 84 and was diagnosed with primary progressive MS (PPMS) thirty years ago. To mak a long story short I’ve been managing my PPMS using diet, exercise and attitude. BTW, I stopped eating before my diagnosis because the taste no suited me. However, I always enjoyed fish. So when I researched ny diet plan I eliminated farm raised fish because of the omege3 and omega 6 plus other items. In fact I think I used data from Loren.so has the thinking changed?

    A minor detail, I only eat fish with scales and fins.

    Another minor detail, I’ve had progressive sins I was a kid I tell yoi this since my typing an be horrible at time, hence my apologies.

  3. One point you didn’t mention, that I would have liked, is for fish like salmon that are not herbivorous how do wild caught compare with aquaculture raised salmon for pesticide residues? I have to believe that most aquaculture raised salmon are raised with feed derived from conventional grains and legumes (not organically grown) that have been sprayed with pesticides, fungicides etc.

Leave a Reply

Your email address will not be published. Required fields are marked *

Affiliates and Credentials