The Anthropology of Sport and Human Movement
A Biocultural Perspective

Edited by Robert R. Sands and Linda R. Sands
Preface
Acknowledgments

Part 1: Foundations
1 Anthropology Revisits Sport through Human Movement
 Robert R. Sands
 5
2 Impact of the Concept of Culture on the Concept of Man
 Clifford Geertz
 39
3 From Landscapes to Playscapes: The Evolution of Play
 in Humans and Other Animals
 Kerrie P. Lewis
 61

Part 2: Evolution of Human Running: The Precursor to Sport
4 Endurance Predator
 Bernd Heinrich
 91
5 Thermoregulation and Hydrating Strategies in Human Evolution
 Timothy Noakes
 103
6 Homo cursor: Running into the Pleistocene
 Robert R. Sands
 143
Preface

For many years, one of the editors struggled against the lack of attention his discipline paid to sport and culture. From a promising beginning in the early 1970s, anthropologists joined other social scientists and founded the Anthropological Association for the Study of Sport and Play (TAASP). Yearly conferences were held and volumes were generated from these conferences. However, interest in this kind of scholarship never caught on beyond a few anthropologists, including Norbeck, Blanchard, and Cheska. The subject of sport, and sport and culture as it relates to the human condition, were eventually adopted by the sister fields of the social sciences.

When dealing with sport and culture, sociologists, historians, and psychologists tracked to the traditional foci of their individual fields and the signature trademarks of anthropology: holism, ethnography, and the comparative method, as well as the interest in all facets of the human condition were never fully realized. Granted, ethnography has become of late a method utilized by any number of fields and professions, and it has been used by those in fields that do research in sport and culture, especially in cultural studies, feminist and queer studies, and now recently, sports studies. Sands, Klein, Brownell, Bolin, Granskog, Moore, and a few other anthropologists, continue to do singular work, never really seeing anthropology embrace the phenomenon of sport despite its universal appeal. The growth of a truly global appeal of sport and the recent resurgence in indigenous sport forms and subjects such as Kenyan running would have benefited from an anthropological perspective.
Ten thousand years sounds like a long, long time ago. But if you think about it in terms of how long the human genus (*Homo*) has existed (2.5 million years), 10,000 years is a mere blink of the eye on an evolutionary time scale. Somewhere in the Middle East about 10,000 years ago a tiny band of people threw in the towel and abandoned their hunter-gatherer lifestyle. These early renegades became the very first farmers. They had forsaken a mode of life that had sustained each and every individual within the human genus for the previous 100,000 generations. In contrast, only a paltry 500 human generations have come and gone since the first seeds of agriculture were sown. What started off as a renegade way of making a living became a revolution that would guarantee the complete and absolute eradication of every remaining hunter-gatherer on the planet.

At the dawn of the twenty-first century we are now at the bitter end. Except for perhaps a half dozen un-contacted tribes in South America and a few others on the Andaman Islands in the Bay of Bengal, pure hunter-gatherers have vanished from the face of the earth.

So what difference does it make? Why should twenty-first-century endurance athletes care one iota about whether or not there are any hunter-gatherers left on earth? Because once these people are gone we will no longer be able to see how they typically exercised or what they ate. Their lifestyle holds invaluable clues to the exercise and dietary patterns that are built into our genes. When I was a track athlete in the late 1960s and
early 1970s, runners rarely or never lifted weights, and back then no runner worth their Adidas or Puma flats would even think about swimming. Fast forward thirty years. What progressive coach now doesn’t know the value and benefit of cross training? The idea that cross training has value probably could have been figured out much earlier had we only taken notice of clues from our hunter-gatherer ancestors.

Very few modern people have ever experienced what it is like to “run with the hunt.” One of the notable exceptions is Dr. Kim Hill, an anthropologist at the University of New Mexico who has spent the last thirty years living with and studying the Ache hunter-gatherers of Paraguay and the Hiwi foragers of Southwestern Venezuela. His description of these amazing hunts represents a rare glimpse into the activity patterns that would have been required of us all, were it not for the Agricultural Revolution.

I have only spent a long time hunting with two groups, the Ache and the Hiwi. They were very different. The Ache hunted every day of the year if it didn’t rain. Recent GPS data I collected with them suggests that about 10 km per day is probably closer to their average distance covered during search. They might cover another 1–2 km per day in very rapid pursuit. Sometimes pursuits can be extremely strenuous and last more than an hour. Ache hunters often take an easy day after any particularly difficult day, and rainfall forces them to take a day or two a week with only an hour or two of exercise. Basically they do moderate days most of the time, and sometimes really hard days usually followed by a very easy day. The difficulty of the terrain is really what killed me (ducking under low branches and vines about once every twenty seconds all day long, and climbing over fallen trees, moving through tangled thorns, etc.) I was often drenched in sweat within an hour of leaving camp, and usually didn’t return for 7–9 hours with not more than thirty minutes rest during the day. The Ache seemed to have an easier time because they “walk better” in the forest than me (meaning the vines and branches don’t bother them as much). The really hard days when they literally ran me into the ground were long distance pursuits of peccary herds when the Ache hunters move at a fast trot through thick forest for a couple of hours. None of our other grad students could ever keep up with these hunts, and I only kept up because I was in very good shape back in the 1980s when I did this.

The Hiwi on the other hand only hunted about 2–3 days a week and often told me they wouldn’t go out on a particular day because they were “tired.” They would stay home and work on tools etc. Their travel was not as strenuous as among the Ache (they often canoed to the hunt site), and their pursuits were usually shorter. But the Hiwi sometimes did amazing long distance walks that would have really hurt the Ache. They would walk to visit another village maybe 80–100 km away and then stay for only an hour or two before returning. This often included walking all night long as well as during the day. When I hunted with Machiguenga, Yora, Yano-mamo Indians in the 1980s, my focal man days were much, much easier than with the Ache. And virtually all these groups take an easy day after a particularly difficult one.

By the way, the Ache do converse and even sing during some of their search, but long distance peccary pursuits are too difficult for any talking. Basically men talk to each other until the speed gets up around 3km/hour which is a very tough pace in thick jungle. Normal search is more like about 1.5 km/hour, a pretty leisurely pace. Monkey hunts can also be very strenuous because they consist of bursts of sprints every 20–30 seconds (as the monkeys are flushed and flee to new cover), over a period of an hour or two without a rest. This feels a lot like doing a very long session of wind sprints.

Both my graduate student Rob Walker and Richard Bribiescas of Harvard were very impressed by Ache performance on the step test. Many of the guys in their mid 30s to mid 50s showed great aerobic conditioning compared to Americans of that age. (V02 max/kg body weight is very good). While hunter gatherers are generally in good physical condition if they haven’t yet been exposed to modern diseases and diets that come soon after permanent outside contact, I would not want to exaggerate their abilities. They are what you would expect if you took a genetic cross section of humans and put them in lifetime physical training at moderate to hard levels. Most hunting is search time not pursuit, thus a good deal of aerobic long distance travel is often involved (over rough terrain and carrying loads if the hunt is successful). I used to train for marathons as a grad student and could run at a 6:00 per mile pace for ten miles, but the Ache would run me into the ground following peccary tracks through dense bush for a couple of hours. I did the 100-yd in 10.2 in high school (I was a fast pass catcher on my football team), and some Ache men can sprint as fast as me.

But hunter-gatherers do not generally compare to world class athletes, who are probably genetically very gifted and then undergo even more rigorous and specialized training than any forager. So the bottom line is foragers are often in good shape and they look it. They sprint, jog, climb, carry, jump, etc., all day long but are not specialists and do not compare to Olympic athletes in modern societies.

Dr. Hill’s wonderful imagery and insight tells us part of the story, but not everything. In this day and age of gender equality women are just as
likely as men, if not more so, to be found at the gym lifting weights or out on the trails running or riding their bikes. In stark contrast, hunter-gatherer women almost never participated in hunting large game animals. Nearly without exception, ethnographic accounts of hunter-gatherers are in agreement on this point. Does this mean that women did no hard aerobic work? Absolutely not! Women routinely gathered food every two or three days. The fruits of their labors just didn’t include plant foods, but also small animals such as tortoises, small reptiles, shellfish, insects, bird eggs, and small mammals. They spent many hours walking to sources of food, water and wood. Sometimes they would help carrying butchered game back to camp. Their foraging often involved strenuous digging, climbing and then hauling heavy loads back to camp, frequently while carrying infants and young children. Other common activities, some physically taxing, included tool making, shelter construction, childcare, butchering, food preparation, and visiting. Dances were a major recreation for hunter-gatherers and could take place several nights a week and often last for hours. Table 10.1 shows some typical hunter-gatherer activities and their modern counterparts along with the associated caloric costs.

<table>
<thead>
<tr>
<th>Hunter-gatherer Activity</th>
<th>Modern equivalent Activity</th>
<th>Caloric cost (kilocalories/hour) for a 176 lb Male/132 lb. Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry log</td>
<td>Carry logs</td>
<td>893/670</td>
</tr>
<tr>
<td>Run cross-country</td>
<td>Run cross-country</td>
<td>782/587</td>
</tr>
<tr>
<td>Carry meat (20 kg) back to camp</td>
<td>Climb hills (20 kg load)</td>
<td>706/529</td>
</tr>
<tr>
<td>Carry young child</td>
<td>Climb hills (10 kg load)</td>
<td>672/504</td>
</tr>
<tr>
<td>Hunt, stalk animals (carrying bows & spears)</td>
<td>Climb hills (5 kg load)</td>
<td>619/464</td>
</tr>
<tr>
<td>Dig (tubers in a field)</td>
<td>Dig (in the garden)</td>
<td>605/454</td>
</tr>
<tr>
<td>Dance (ceremonial)</td>
<td>Dance (aerobic)</td>
<td>494/371</td>
</tr>
<tr>
<td>Stack firewood</td>
<td>Stack firewood</td>
<td>422/317</td>
</tr>
<tr>
<td>Butcher large animal</td>
<td>Ax chopping, slow</td>
<td>408/306</td>
</tr>
<tr>
<td>Walk — normal pace (fields & hills)</td>
<td>Walk — normal pace (fields & hills)</td>
<td>394/295</td>
</tr>
<tr>
<td>Gather plant foods</td>
<td>Weed garden</td>
<td>346/259</td>
</tr>
<tr>
<td>Archery</td>
<td>Archery</td>
<td>312/234</td>
</tr>
<tr>
<td>Scrape a hide</td>
<td>Scrape paint</td>
<td>302/227</td>
</tr>
<tr>
<td>Shelter construction</td>
<td>Carpenter, general</td>
<td>250/187</td>
</tr>
<tr>
<td>Flint knapping</td>
<td>Shoe repair, general</td>
<td>216/162</td>
</tr>
</tbody>
</table>

So, the overall activity pattern of women, like men, was cyclic with days of intense physical exertion (both aerobic and resistive) alternated with days of rest and light activity. What hunter-gatherers had to do in their day-to-day activities is turning out to be good medicine for modern-day athletes. When Bill Bowerman, the famous track coach at the University of Oregon, advocated the easy/hard concept back in the 1960s it was thought to be both brilliant and revolutionary. Using his system of easy/hard, athletes recovered more easily from hard workouts, and their chances of getting injured were reduced. Ironically, Coach Bowerman’s “revolutionary” training strategy was as old as humanity itself. Similarly, weight training combined with swimming was a stunning innovation at Doc Counsilman’s world-famous swim program at Indiana University in the 1960s. Now, it is a rare world-class endurance coach who doesn’t advocate cross training to improve performance, increase strength and reduce injury incidence. Once again, the rationale behind the success of cross training can be found in the hunter-gatherer genes in all of us.

WHY WE ARE DESIGNED TO EXERCISE

It may seem totally obvious, but sometimes the obvious is rarely considered. Do you know why the Ache and, for that matter, all hunter-gatherers exercise? Before we go down this road, let’s clarify the word “exercise.” No adult hunter-gatherer in their right mind would have ever set off on a run or repeatedly lifted a heavy stone simply to expend energy and “get exercise.” Virtually all movement by adult hunter-gatherers resulted from the day’s mandatory activities such as food and water procurement, shelter building, journeys, tool making, wood gathering, escape from dangers, child rearing, and social activities. The activities of daily life were all the “exercise” that Stone Age people would have ever taken. Hunter-gatherers had no choice but to do physical labor of all kinds, every day—day in and day out for their entire life. Every single day, there were big tasks and small tasks alike that had to be accomplished to provide for basic human needs. There were no retirements, no vacations, no job layoffs, no career changes or labor-saving devices. Except for the very young or the very old, everyone did labor of one form or another on a regular basis.

Okay, let’s get back to the obvious that you may have never considered. Hunter-gatherers “exercised” because they had to. They had no other
choice—period! For all humans living before the Agricultural Revolution, energy input (food) and energy expenditure (exercise) were directly linked. If Stone Age people wanted to eat, they had to hunt, gather, forage, or fish. Now you can see what may have motivated the Ache hunters as they furiously chased that herd of peccaries hour after hour through the tropical forest in Paraguay. Whether you do a long, hard workout or no workout at all, food is always there for you at the end of the day. Wouldn’t it be disappointing to do your long hard workout and come home to an empty fridge? Would an empty belly motivate you even more on the next workout (hunt), if the intensity of the workout was directly related to the amount of food in the refrigerator?

In the modern world we have totally and completely obliterated the ancient evolutionary link between energy expenditure (exercise) and food intake. As you lazily stroll down the supermarket aisle and throw one item after another into the cart, you don’t give a single thought to “search time” or “pursuit” of your prey, as Dr. Hill graphically portrayed for us with his descriptions of the Ache hunters. In a modern supermarket, the “search” and “pursuit” time are identical whether you toss a smoked ham into your cart or a head of lettuce.

The consequence of severing this primeval evolutionary connection between energy expenditure and energy intake are not pretty. When we eat more energy than we expend, we gain weight. And when we gain weight, our health suffers. Unless, you haven’t read a newspaper or a magazine lately, most of you know that we are in the midst of an obesity epidemic in the United States. Two-thirds of all Americans are either overweight or obese. Forty million American have type-2 diabetes, and cardiovascular disease is the leading cause of death in this country. There is little doubt in my mind that none of this would be possible without the uncoupling of energy intake and expenditure that was handed to us when we deserted our ancestral hunter-gatherer way of life.

COMPARISON OF THE LIFESTYLES OF HUNTER-GATHERERS AND MODERN ATHLETES

After reading Dr. Hill’s description of the Ache hunters you’ve probably got a pretty good feel for how their daily workout compares to yours. Some of you may be recreational athletes; some of you may be good local and regional endurance athletes, and a very few of you may be elite athletes of national or international caliber. How would the average hunter-gatherer stack up when it comes to high level endurance performance on race day?

First, let’s take a look at the advantages on the side of the hunter-gatherer. From the time of weaning until very old age hunter-gatherer athletes would have done moderate to hard aerobic activity month in and month out for their entire life. They would have regularly rotated hard days with easy days, and strength activities would always have commonly accompanied their aerobic work. This pattern of movement would have diminished their chance of injury so that they could get up morning after morning to hunt and gather again and again.

In exercise physiology there is a commonly known law stating that aerobic capacity (VO2 max) within an individual may increase based upon exercise frequency, intensity and duration. Of these three factors, intensity is the most important feature in squeezing out the last little bit of aerobic capacity from already-trained subjects. The problem is that as intensity increases, the chance of injury and illness also increase. Hunter-gatherers were in it for the long haul. Their objectives were to obtain food day in and day out, year in and year out for their entire lives. High intensity exercise on a regular basis for them would have been a liability, since injury and illness meant less food. On the other hand, modern-day endurance athletes don’t have to worry about injuries or illness getting in the way of eating. Food is available no matter whether you are injured or not. Accordingly, endurance athletes can take their chances with high intensity training. As a matter of fact, high intensity workouts (>85 percent VO2 max) are not an anomaly, but rather a requisite to perform at the highest levels upon the world’s stage.

As we have previously outlined, it is virtually impossible to exercise at >85 percent VO2 max for extended periods unless muscle glycogen stores are fully topped up. Without daily consumption of high glycemic load carbs, regular high intensity workouts simply are not feasible. Since high glycemic load carbs were not on the hunter-gatherer menu, they could not have eeked out the last 2–5 percent of their genetic aerobic potential by doing high intensity workouts, as can modern athletes. On the other hand, because they ate more fat and fewer daily meals than we do, their intramuscular triglyceride stores would have been much higher, thereby allowing them to do aerobic work at moderate intensity for extended periods. Just
what the doctor ordered if you need to go hunting daily and high glycemic carbs don’t exist. For the modern-day endurance athlete who is solely interested in maximal performance, an alternative exists. Both can be done.

Because the protein content of their diet was higher than ours, the concentration of the anabolic branch chain amino acids (leucine, isoleucine and valine) would have been much higher. As we have previously pointed out, these dietary amino acids promote muscle resynthesis following exercise and may also delay the onset of fatigue. Unless you are eating lots of lean meats and fish, hunter-gatherers would have had the advantage here. The high protein content of our ancestral diet meant that another amino acid, glutamine, would have also been higher than what you are getting if you are following a vegetarian beans and brown rice diet or simply the standard American junk food diet. A classic symptom of overtraining in endurance athletes is low blood levels of glutamine.

The trick with glutamine is not just how much you are getting, but how much you are losing. Losing excess glutamine is just like not getting enough. If you are eating a high carb, low fat diet, which is pretty much the standard endurance athlete fare, it is almost certain that your body will be in a slight state of net metabolic acidosis. As we have previously shown you, a net acid-producing diet causes your body to excrete more and more of the muscle’s glutamine in an attempt to restore acid-base balance. The loss of muscle glutamine from an acid-yielding diet and from insufficient intake of glutamine-rich foods (lean meats, fish and seafood) may adversely affect performance. Chalk another advantage to hunter-gatherers.

One of the most important variables leading to athletic success is staying healthy and free of illness and colds. There is little doubt that proper nutrition is absolutely essential when it comes to optimizing your immune system. Because hunter-gatherers ate no processed foods, no cereal grains, no refined sugars or oils, their trace nutrient (vitamins, minerals and phytochemicals) intake was way higher than what the average U.S. citizen gets. Also, they consumed more healthful omega 3 fats than what most of us now get. These dietary advantages would have again allowed our hunter gatherer ancestors to go out day after day and hunt and forage for food without interruption from illness and colds. For our species, natural selection had no interest in winning a 10k or marathon, but rather was more concerned with getting our daily calories. The name of the evolutionary game was adequate calories, not necessarily maximal exercise performance.

So, let’s get down to the nitty gritty. Was there ever a hunter-gatherer who could have taken home the Olympic gold in any endurance event in the last thirty years? The answer is no. The average hunter-gatherer was clearly more fit than the average American couch potato as we pointed out in the prologue. Most foragers (men or women) would have also been able to run any recreational runner into the ground. At the local and regional levels, their best athletes would have been competitive. But when we compare them to elite national and international athletes, there is no comparison for two basic reasons.

First are the numbers. The primary determinant of aerobic capacity is maximal oxygen consumption or VO2 max. If you want to be a world-class endurance athlete, you better choose your parents well because VO2 max is almost entirely determined by genetics. One of the highest VO2 max values ever reliably recorded for an elite male athlete in the United States is about 84 ml/kg/min. Contrast this value to about 40 ml/kg/min for the average American male. So what happens if the 40 ml/kg/min guy wants to become world-class and sets off upon an incredibly intense training program for years and years? Does he have a chance of getting to 84 ml/kg/min? Not even close! VO2 max can increase by about 10–15 percent in the best of all worlds, but no more. In the United States we now have more than 260 million residents. Compare this to the fewer than 1,000 Ache hunter-gatherers with whom Dr. Hill hunted. If only one person out of 1,000 has a genetically determined VO2 max of greater than 70 ml/kg/min, then in the United States population there will be 26,000 people who have the genetic potential to perform at extremely high aerobic capacities. In the Ache hunter-gatherers only one person in their entire population will have this genetic capacity.

Hunter-gatherers wouldn’t stand a chance against Olympian endurance athletes not only because of the numbers game, but because they were limited to low octane fuel. Intramuscular triglyceride is a great energy source for moderate to hard exercise lasting for hours and hours, but it can’t hold a candle to glycogen when it comes to high-level exertion at 85 percent or greater of the VO2 required to make Olympic champions. Because hunter-gatherers ate fewer carbs and more fats, along with fewer daily meals, their intramuscular triglyceride stores would have been higher than ours. But also, they ate no high glycemic load carbs, so their muscle glycogen reserves would have always been lower than ours. They simply lacked the fuel injection of high glycemic load carbs to restore
muscle glycogen concentrations following hard exercise. You now have this option. You can not only increase muscle glycogen concentrations via careful dietary manipulation, but by following a nutritional plan, you can also increase intramuscular triglycerides.

You, as a twenty-first-century endurance athlete are no longer reliant upon the current scientific status quo relating diet to performance, but have the added advantage of knowing how the wisdom of your ancestral dietary background can improve performance. By combining the best of their world with the best of ours, your performance will soar.

BIBLIOGRAPHY

When Pain = Strain = No Gain: The “Physiology of Strain” and Exercise Intensity, c. 1850–1920

Peter G. Mewett

Moderate training, without strain, “will assist in the preservation of our young men’s lives, chastity, manliness, and love and appreciation of sport.”

—Rippon Seymour nd (1898, 103)

Where young men, by a simple course of diet and repeated exercise, have fully developed their powers, they have sustained lasting benefit from indulging in tests of endurance and skill, and have stood pre-eminent as possessed of that greatest of all blessings, “a sound mind in a healthy body.”

—Sportsman, 1889: 96

From Greco-Roman times, a judicious combination of diet, exercise and general bodily care has been recommended for good health and longevity. The humoral theories that informed physiological understandings until well into modern times prescribed food, drinks and activities as well as medicines and other interventions such as purging and bleeding, for the well-being of people and animals. Although humoral theory gradually faded into historical obscurity, the combination of diet, exercise, and body care as the underpinnings of a sound lifestyle have remained to this day. The massive growth of medical and biological science in the nineteenth century heralded the end of humoral understandings and instead replaced them by ideas germinated in this period of considerable intellectual activity. Ideas that were transposed into and provided guidance on the dietary