Tag Archives: training

Female sprinter | The Paleo Diet

So with the New Year upon us, diet and exercise resolutions typically feature prominently in many people’s lives.  However, in most cases, these resolutions fail fairly quickly and; in many cases, they have already been broken.  Despite the well-recognized beneficial impact of regular exercise on numerous health parameters, exercise participation and adherence in the general population remains poor1 – ‘lack of time’ being one of the most commonly cited reasons why individuals fail at committing to a regular exercise program2.  Consequently, it would be prudent to examine effective exercise programs that do not require a significant time commitment.

Last year, I wrote an article here that covered some of the science behind supra-maximal interval training (SIT), a mode of exercise that creates physiological benefits with a minimal time investment. And; so, if you think the title of this piece sounds too good to be true, I advise you to go and read or re-read that article so that the protocol I’m about to describe to you is more believable; as well as, understand that it does indeed have scientific backing and makes physiological sense. So the purpose of this article is to simply provide the reader with an easy to implement effective exercise protocol that requires an incredibly small investment of time.

When I lecture about SIT, I describe an activity that helps my audience understand why intensity, not duration, is the key ingredient to improving one’s fitness.  I ask the audience to close their eyes and imagine they are standing at the base of the stairs inside a football stadium. I, then, ask them to imagine ascending the stairs as fast as they can while I describe to them the many varied speeds that would be witnessed despite everyone putting forth the same relative effort.  I also describe what everyone would be typically feeling at 15, 30, 45 and finally 60 seconds when I shout stop. I, then, ask them to compare the heaving breathing and the feeling of lactic acid in their lungs and muscles that they would be experiencing to what they would experience following an hour-long walk or slow jog.  Then a simple question:  which of these two training modalities do they think is going to stress them more to cause a physiological change to their cardiorespiratory and metabolic fitness?  Common sense leads everyone to consistently choose the all-out sprint as the method that they think would lead to a greater physiological change.  After then quantifying the number of steps attained, I state that everyone is done training for the day and; since they will inevitably feel some effects from that all-out effort, they will have a day’s rest before returning to the stadium for their second all-out stair-climb on day three.  I tell them we are going to continue doing this for 30 sprints, which will equate to two months of training requiring just 3½ minutes per week! To clarify this time commitment, it would take two weeks to complete seven “every other day” 60-second sprints, hence 3½ minutes per week.  And, finally, the ultimate question, “does anyone doubt, that on the 30th sprint, you will be able to attain significantly more steps than you did back on day one?”  Intuitively, people understand that they would be able to do more steps on their last sprint compared to their first.  And if this happens, by definition one is now fitter since a greater amount of work has been accomplished in a given amount of time.  So you can indeed improve your fitness in just 3½ minutes per week when the training effort is maximal or close to maximal.

You can test this out for yourself, and so here’s your challenge for the New Year:  While continuing with your current level of activity, add just 3½ minutes per week of all-out sprinting and see for yourself what this can accomplish.  I will offer different options for you on how to accomplish adding in these “sprints”; but, first let me describe what I recently did to prove my point.  Since improvement is always harder when one is already very fit, I reduced my own training to the lowest possible quantity, given that conditioning people is part of what I do for a living and am; therefore, constantly on my feet; as well as, demonstrating exercises throughout the day.  However, eliminating my own training for a few months led to a significant decrease in my maximal 60-second sprint speed, on a treadmill set to a 15% incline, from about 9.0 mph to around 7.0 mph.  I, then, embarked on an exercise protocol that involved sprinting on a treadmill, set at a 15% incline, for just 60-seconds, every other day, beginning at 7.0 mph, a speed previously established as a maximal or at least close to maximal effort.  If the 60-second sprint was successfully completed, the subsequent sprint was done at a speed 0.1 mph greater than the preceding sprint, equivalent to running an additional 2.68 meters in 60-seconds.  If the 60-second sprint was not successfully completed, the speed was not increased for the next sprint until it was successfully completed.  The protocol was conducted for five weeks such that a total of 18 sprints were completed.  Table 1. shows the speed (mph), time completed (s), meters attained, increase in meters from the first sprint, and percent improvement from the first sprint for each of the 18 sprints, and Figure 1. graphically displays the additional meters attained from the first sprint.


Sprint Table with Caption (2)


Sprint Graph with Caption (2)


As both Table 1. and Figure 1. demonstrate, over the course of just five weeks, sprinting all-out for 60 seconds every other day, resulted in an improvement of 32.18 meters (105.58 feet) from the first sprint, a 17.14 percent improvement.  Note that not every sprint was successfully completed on the first attempt at the increased speed.  When you are working at a maximal effort, there are many factors that influence performance, mental fortitude probably playing the largest role.  But even when the sprint isn’t successfully completed, your system is still being significantly challenged and a training effect is still occurring.  Consequently, over time, you will see an increase in performance albeit with a few peaks and valleys along the way.

Now, while this protocol will help you improve your fitness, I’m not suggesting that adding a few more sprints to your work-out is not going to help you more.  In fact, you might be thinking, if I’m going to make the effort to get to the gym, I might as well do a couple more sprints while I’m there!  So, of course, you can do more; but, be careful how much SIT you do, as it is easy to over-train.  Research has already shown that SIT for 8 minutes per week for just 2 weeks can both double endurance capacity3; as well as, substantially improve insulin action4 , so doing significantly more than that likely isn’t necessary for most people.  Additional exercise time could be better spent in other modes of exercise to improve strength and mobility for example.  Since I began my interest in SIT back in the mid 1990s, the research has always suggested a similar quantity to that used in the above referenced research.  As a consequence, I have used with my clients and recommended in lectures, a 12-minute per week protocol that has proven very successful.  This 12-minute per week protocol involves completing four, 60-second sprints, separated by a 4-minute recovery, three days per week.  The three days also need to be separated by at least one days rest in order for the body to adapt and recover.  Consequently, a Monday, Wednesday, Friday timetable works well for many people.  It is important not to shorten the 4-minute recovery because if you do, you will not be able to maintain the power output attained in the first “all-out” effort interval.  In fact, 4 minutes is a minimal recovery timeframe and you can certainly take more recovery with no detriment to the training.  In fact, I have often stated that having a very long recovery (e.g., an hour or more) is better because you will ultimately be able to increase your power output by having more recovery. It is not about “keeping your heart-rate up” during the work-out, the 60-second sprint itself is challenging enough.  Now obviously having an hour recovery is not the most time-efficient if you’re doing this work-out at the gym; however, if you have access to a modality at home or work, this approach can work very well.  For example, many people have a tall enough staircase at their workplace which works well for SIT as the impact is low while the intensity can easily become maximal.

I have conveyed this message to thousands of fellow health-care professionals in my capacity as a lecturer for the Titleist Performance Institute, who, in-turn, have passed this on to their clients, and I have yet to hear that the protocol hasn’t significantly improved anyone’s health and performance.  A year after one such lecture, a physical therapist approached me at another seminar to thank me for the recommendation.  He worked at a hospital and used the staircase in his building to run four, 60-second sprints throughout the day on a Monday, Wednesday, and Friday. A great benefit to spacing the sprints throughout the day is that you do not really perspire in just 60-seconds and; so, with a long recovery, you do not need to be changing into work-out clothes – avoid high-heals; but, other than that, your pretty much good to go in your usual work attire.  The physical therapist went on to tell me that he corralled a group of his co-workers to commit to the program along with him and; in doing, so was able to lose over 50 lbs. over the course of the year!  Pretty good for just 12 minutes per week!

There are many different modalities that can be used for SIT; but, for those where balance, mobility or joint issues come into play, the upright stationary bike is probably the best alternative.  It also works well for everyone else, too.  However, unlike for most treadmills, where the speed is pre-determined, upright stationary bikes set a resistance and the speed is dictated by the user.  As a consequence, the speed is quicker at the beginning and slows quickly as fatigue develops with time; hence, 60 seconds feels like an eternity. So if you choose to use an upright stationary bike, set the resistance to as high as you can handle and complete the time prescription in 30-second increments rather than 60.

So, in closing, don’t give up on a new year’s exercise resolution because you can’t commit to a plan that requires an amount of significant time.  Hopefully, you’ve seen that a little exercise can go a long way when implemented with an all-out effort.  And if you do fail with your New Year’s resolution, don’t give up for the long term; realize that you can get right back on track any time with a minimal amount of time required.


[1]Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 2012; 380(9838): 247-57.

[2]Korkiakangas EE, Alahuhta MA, Laitinen JH. Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health Promot Int 2009; 24(4): 416-27.

[3]Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology 98: 1985-1990, 2005.

[4]Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell, Timmons JA. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr. Disord. 2009 Jan 28; 9:3.


Are You Eating Enough Carbs For Optimal Recovery?  | The Paleo Diet

While a low-carb Paleo diet is phenomenal for supporting weight loss and improving health if you are overweight, out of shape, or obese, not everyone is trying to lose weight.

For athletes training to achieve a personal best running a 10k, triathlon, or qualifying for the CrossFit Games, your eating strategy will not be one in the same.

Exercise is a catabolic process, triggering a release of stress hormones cortisol and adrenaline in order to raise blood sugars to fuel your activity. If you are exercising at a slow pace (less than 65% heart rate) your body has the time to use fat as a primary fuel source. However, as your exercise intensity increases your body quickly shifts to using muscle and liver glycogen (your body’s carb stores) to fuel exercise.

You have a limited capacity to store glycogen, which means after about 1-hour of training at a high intensity, you’ll likely have exhausted all your body’s glycogen stores.


The research is quite clear that if you start your next training session with low or sub-optimal glycogen status, you’ll significantly reduce your capacity to work and your performance will suffer. A recent study of athletes who consumed only 40% of their total calories as carbohydrates and performed “two-a-day” training sessions suffered a significant decrease in their performance during the 2nd session because they did NOT adequately replenish muscle glycogen stores.1

If you are training at high intensity and following a low-carb diet, you are treading a fine line. If your goal is to be fit and lean, this isn’t really a problem. However, if your goal is optimizing your performance potential, eventually you will exhibit signs of overtraining and exhaustion.

Overtraining happens when you train intensely for too long, without adequate rest periods or tapers built into your training regime. While you do want to push yourself to the edge to stimulate a training adaptation (‘over-reaching’), you don’t want to push yourself over the edge!

Short-term symptoms of inadequate glycogen repletion include fatigue, reduced work capacity during training, poor recovery and extended delayed onset muscle soreness (DOMS). Long-term symptoms are pronounced fatigue, reduced strength levels and increased muscular weakness.


The best way to replenish glycogen after training is to consume high-glycemic index (GI) carbs. High GI carbs enter the bloodstream quickly, allowing you to rapidly replenish glycogen stores in the first 30-60 minutes after training, when glycogen synthase enzyme activity is elevated and allows for optimal replenishment.2 Root vegetables make a great post-workout carb choice, especially if you bake them, which naturally raises the glycemic index of these foods, such as sweet potatoes, yams, yucca, plantains, carrots, beets, parsnips, etc.

If you are on the go and don’t have time to sit down for meal, try adding some dried fruit to your post-workout nutritional arsenal. Dried fruit is very high-glycemic, and while not ideal as a midday snack when sitting at your desk, it’s a great option after vigorous activity. Try 2-4 Medjool dates for 36-72g of carbs, or half a pack of dried mangos (1.5oz provides 36g of carbs).

The total amount of carbs you consume post-training depends on a few variables: your genetics, current body-fat percentage, training phase, etc. Aim for one gram of carbs per kilogram bodyweight in the first hour after exercise (divide your bodyweight in pounds by 2.2 to achieve your weight in kilograms).2,3 This can be repeated every two hours for up to 6 hours post-training for elite level trainees and sports that require two-a-day training, such as triathletes, Olympic weightlifters, and Ironman competitors.

In China, a recent study examined the effects of high-glycemic meals after exercise on performance in runners. The results showed athletes consuming high-GI meals post-training had significantly improved work capacity during their subsequent run four hours later.4 This highlights the importance for refilling your glycogen stores and ensuring your best performance in your next training session or race day.


Carbs directly replenish glycogen stores and after exercise your capacity to soak up carbs and top up glycogen is heightened. Research shows that if you wait several hours post-training you will reduce your glycogen repletion rate by as much as 50%!5 Not consuming enough carbs after exercise can also exacerbate inflammation, depress immunity, and lead to prolonged muscle soreness.6

If you’re already following a low-carb (LC) or very low-carb ketogenic (VLCK) diet you can still benefit by incorporating more carbs than normal post-training, without affecting your capacity to burn fat.7 For some, this may be the added boost you need to upgrade your performance. However, at higher intensity exercise the research shows a LC or VLCK diet does not likely support better performance.8

Remember, if you’re gearing up for a 10k run, triathlon, CrossFit Games or your competitive season, fatigue is directly related to muscle glycogen depletion when exercising at higher intensities. For optimal athletic performance, refuel with the right amount of carbs post-exercise and take your game to the next level.

Happy training!




1. Ivy JL et al. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol. 1988 Nov;65(5):2018-23.

2. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117-44.

3. Ivy JL1.Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1998 Jun;19 Suppl 2:S142-5.

4. Wong SH et al. Effect of glycemic index meals on recovery and subsequent endurance capacity. Int J Sports Med. 2009 Dec;30(12):898-905.

5. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117-44.

6. Flakell PJ et al. Postexercise protein supplementation improves health and muscle soreness during basic military training in Marine recruits. J Appl Physiol 2004;96:951-956.

7. Burke LM, Hawley JA, Angus DJ, et al. Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc 20002;34:83-91.

8. Antonio J, Kalman D, Stout S, et al. Essentials of Sports Nutrition and Supplements. International Society of Sports Nutritionists. Humana Press, NY 2008.

Affiliates and Credentials